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The effects of passive scalar anisotropy on subgrid-scale (SGS) physics and modelling
for large-eddy simulations are studied experimentally. Measurements are performed
across a moderate Reynolds number wake flow generated by a heated cylinder,
using an array of four X-wire and four cold-wire probes. By varying the separation
distance among probes in the array, we obtain filtered and subgrid quantities at three
different filter sizes. We compute several terms that comprise the subgrid dissipation
tensor of kinetic energy and scalar variance and test for isotropic behaviour, as a
function of filter scale. We find that whereas the kinetic energy dissipation tensor
tends towards isotropy at small scales, the SGS scalar-variance dissipation remains
anisotropic independent of filter scale. The eddy-diffusion model predicts isotropic
behaviour, whereas the nonlinear (or tensor eddy diffusivity) model reproduces the
correct trends, but overestimates the level of scalar dissipation anisotropy. These
results provide some support for so-called mixed models but raise new questions
about the causes of the observed anisotropy.

1. Introduction
The statistics and general structure of passive scalars in turbulent flows differ

significantly from those of the turbulent velocity field. In particular, conclusive ex-
perimental (e.g. Stewart 1969; Sreenivasan, Antonia & Britz 1979; Mestayer 1982;
Mydlarski & Warhaft 1998a) and numerical (e.g. Holzer & Siggia 1994) evidence
shows that structure functions and the derivative skewness of the scalar field do not
follow predictions from isotropy at inertial and dissipative scales, in the presence of a
mean scalar gradient. In particular, the deviations are thought to be related to ‘ramp
and cliff structures’ and to imply a direct effect of large-scale structures on small-scale
structures. The data relevant to this question have been reviewed by Sreenivasan
(1991) and more recently by Warhaft (2000). Moreover, scalar spectra display a
distinctly less universal structure than velocity spectra. This is manifested in terms
of both spectral exponents and the dimensionless spectral coefficient cθ . The latter
varies from values near 0.4 in many experiments in the atmospheric surface layer and
grid turbulence (see Sreenivasan 1991, 1996 and Warhaft 2000) to cθ ∼ 1.8 for other
atmospheric measurements (Antonia et al. 1997 and Antonia, Xu & Zhou 1999).
From a fundamental point of view, these observations challenge the Kolmogorov
cascade phenomenology for the transfer of scalar variance from large to small scales.
In the classical phenomenology, the multiplicity of separate ‘eddy breakdown’ events
is assumed to gradually uncouple the small from the large scales, allowing the former
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to tend to a universal and isotropic structure more or less independent of the large
scales. On the contrary, the scalar-field measurements suggest a direct linkage among
largest and smallest scales.

The coupling among scales is an important ingredient in large-eddy simulations
(LES). In LES, the turbulent fields (velocity and scalar) are decomposed into large and
small (subgrid-scale, SGS) scale contributions by means of a spatial low-pass filter of
characteristic width ∆. The resulting equations which can be numerically discretized
with mesh spacing of the order of ∆ require closure of the unresolved momentum
fluxes (SGS stress tensor, τij ≡ ũiuj − ũiũj , where a tilde represents filtering at scale

∆) and scalar fluxes (e.g. the SGS heat flux, qj ≡ θ̃uj − θ̃ũj where θ is the passive
scalar field). The promise of LES is often predicated upon small-scale universality and
isotropy, and the absence of a strong coupling across disparate length scales. Hence,
the observed anisotropy of the scalar field seems to pose a challenge to the very
foundation of LES. While these deviations from classical phenomenology are now
quite well established, little is known about their impact on the closure problem for
LES. The present work quantifies the implications of small-scale scalar anisotropy on
quantities that describe subgrid-scale physics and directly affect modelling for LES.

As reviewed in Meneveau & Katz (2000), the most important statistical property
of the fluxes τij and qj is how they affect the mean kinetic energy and scalar-variance
budgets of the resolved fields. Specifically, their dominant effect is through the
kinetic energy and scalar-variance dissipations that arise from interactions between
subgrid and resolved scales. Therefore, in the present study, we mainly focus on

the so-called SGS kinetic energy dissipation −〈τij S̃ij〉 (Piomelli et al. 1991) and

scalar-variance dissipation −〈qjG̃j〉 (Porté-Agel, Meneveau & Parlange 1998). Here

S̃ij ≡ 1
2

(
∂ũi/∂xj + ∂ũj/∂xi

)
and G̃j ≡ ∂θ̃/∂xj are the resolved strain-rate tensor and

scalar gradient, respectively. The SGS dissipation rates represent the flux (cascade) of
kinetic energy or scalar-variance from resolved towards subgrid scales (when positive).
When ∆ pertains to the inertial range, and when the flow is in equilibrium, one expects
the mean SGS dissipation to equal the molecular dissipation rate.

Deviations from isotropy in the context of SGS dissipation can be probed by

measuring the isotropy level of the tensors −〈τij S̃mn〉 and −〈qiG̃j〉, as a function of
scale. The main question to be addressed in this work is whether the approach to
isotropy (if it exists) is the same for kinetic energy and scalar-variance dissipation
tensors. Another goal is to test the ability of two popular model classes (eddy
diffusivity and nonlinear models, see Meneveau & Katz 2000 for a review) to reproduce
the observations. In order to span a sizeable range of inertial-range filter scales, a
sufficiently high Reynolds number must be considered. Hence, this study is based on
experimental data (as opposed to DNS which is limited to small Reynolds numbers).
The study is performed in a canonical shear flow, the heated cylinder wake.

2. Experiment apparatus and flow characteristics
Experiments were performed in the return type Corrsin Wind Tunnel (Comte-Bellot

& Corrsin 1966). A heated smooth cylinder of diameter D = 4.83 cm was located
horizontally at the centreline of the test section. The measurement location in the
streamwise direction (x1) was fixed at x1/D = 25. To obtain the filtered and SGS
quantities, an array of four custom-made miniature probes was used. Each probe was
composed of one X-type hot wire and one I-type cold wire for the velocities in the
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(x1, x2)-plane and the temperatures, respectively. Here x2 is the ‘cross-wake’ direction,
i.e. perpendicular to x1 and to the cylinder axis.

The separation distance h between the probes in the cross-wake direction x2 could
be adjusted manually between 5 and 20 mm. Three configurations (∆ = 2h, with h = 5,
10 and 20 mm) were used in the present study. A 2.5 µm platinum-coated tungsten
wire which had been copper-plated was soldered on to the X-wire prong ends and
etched, yielding an active length-to-diameter ratio of about 200. The wire spacing
between the hot wires was 0.5 mm. A 0.625µm silver-coated pure platinum wire for
a cold-wire sensor was soldered on the I-wire prong ends and subsequently etched.
To minimize the low-frequency amplitude attenuation, the active length-to-diameter
ratio was about 1000 as suggested by Bruun (1995). The separation distance between
the cold wire and its nearest hot wire was 0.9 mm so that the thermal effect from
the hot wire on the cold wire was negligible. The signals were low-pass filtered at a
frequency of 20 kHz and sampled at fs = 40 kHz. Sampling time was 60 s, so the total
number of data points per channel for each measurement location was 2.4× 106. The
array was traversed across the wake, and data were recorded at 17 discrete cross-wake
locations from the centreline to the wake edge at increments of 14.4 mm.

At the measurement location of x1/D = 25, the mean centreline velocity (UCL) was
13.6 m s−1, the defect velocity (Ud = U∞ −UCL) was 4.4 m s−1, the defect temperature
(θd = θCL − θ∞) was 0.61 ◦C, and the half-width of the wake was ` = 0.08 m. To get
the spatial quantities along the streamwise direction from the temporal data, Taylor’s
hypothesis was invoked. The turbulence intensity of the streamwise velocity at the
centreline was about 13.3%. The molecular kinetic energy dissipation at the centreline
(εCL) was 87 m2 s−3, and the molecular scalar-variance dissipation at the centreline
(εθCL) was 0.65 ◦C2 s−1. The latter two variables were obtained from (corrected) third-
order structure functions as in Cerutti, Meneveau & Knio (2000) and Lindborg
(1999). It follows that the Kolmogorov length scale (η = (ν3/ε)1/4) was 0.08 mm,
the Taylor microscale (λ) was 2.9 mm, and the Reynolds number based on Taylor
microscale (Reλ) was 350. The longitudinal integral scale obtained by integrating up
to the first zero crossing of the u1 correlation function was L11 = 0.091 m. Profiles
of mean velocity, r.m.s. velocities, Reynolds shear stress, r.m.s. temperature and heat
flux distributions across the wake agreed quite well with results in the literature (e.g.
Matsumura & Antonia 1993 and Kiya & Matsumura 1988).

In the present study, to separate large and small scales the box filter is applied
to the streamwise and cross-wake directions, and the trapezoidal rule is used for the
spatial integrations. The filtering process consists in a discrete approximation to a
two-dimensional box filter. In the x2-direction, a four-point discretization is used for
evaluating the SGS fluxes while a three-point approximation is used for the filtered
derivatives. Filtered velocity and scalar gradients in the x2-direction are evaluated
using first-order finite differences over a distance h. In the streamwise direction, the
box filter is approximated using ∆fs/〈u1〉 sampling points and the x1-derivatives are
evaluated using finite differences over a distance h. The filtering and error analysis is
documented in Cerutti & Meneveau (2000) and Cerutti et al. (2000).

Figure 1(a) shows a comparison between the longitudinal spectrum E11(κ1) of the
u1-component and the longitudinal spectrum E22(κ1) of the u2-component multiplied
by 3/4 at the centreline. Here, κ1 is the longitudinal wavenumber. The three vertical
lines correspond to the filter sizes of ∆/η =125 (10 mm), 250 (20 mm), 500 (40 mm).
All the filter sizes are in the inertial range. Since the noise peak in the longitudinal
spectrum of u1 is in the far dissipation region, quite removed from any of the filter
frequencies and scales of interest in this study, no effort is made to remove the noise
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Figure 1. Velocity and temperature spectra at the centreline, in Kolmogorov units. (a) The longi-
tudinal spectrum of the u1-component (solid line) and of the u2-component multiplied by 3/4
(dashed line), as a function of the longitudinal wavenumber, κ1. The spectrum of u2 is below that
of u1 at low wavenumber (κ1η < 0.002) with a Strouhal peak (κ1η ∼ 0.003), and higher at high
wavenumber (0.1 < κ1η < 0.4). (b) The longitudinal spectrum of the temperature (solid line) and of
the temperature, filtered at ∆/η = 125 (dashed line). The inserts in (a) and (b) show the compensated

spectra, E11(κ1) ε−2/3κ
5/3
1 , 3

4
E22(κ1) ε−2/3κ

5/3
1 and Eθθ(κ1) ε−1

θ ε
1/3κ

5/3
1 . The three vertical lines are the

wavenumbers corresponding to the filter sizes of ∆/η = 125 (10 mm), 250 (20 mm), 500 (40 mm).
The straight sloping solid lines are the universal spectra (see text).

by additional filtering (various attempts such as notch filtering showed no effect
on the results). It can be clearly observed that E11(κ1) ≈ 3

4
E22(κ1) as required by

isotropy in the inertial range, over about one decade of wavenumbers. The peak in
E22(κ1) at κ1η ∼ 0.003 is due to the periodic von Kármán vortex street behind the
cylinder. The frequency of the vortices is 78.1 Hz, and this gives Strouhal number

St (= fD/U∞) = 0.211. The Kolmogorov constant cK in E11(κ1) = 18
55
cKε

2/3κ
−5/3
1 is

obtained as cK = 55
18

(0.56) = 1.71 in the insert. This value is quite close to the standard
value of 1.6 (see Sreenivasan 1995) and a similar value of 1.7 was observed by O’Neil
& Meneveau (1997). Figure 1(b) shows the longitudinal spectrum of the temperature
Eθθ(κ1). As seen in the compensated spectrum shown in the insert, there is a fairly clear
inertial range with a −5/3 slope. This slope is steeper than those found in the round
jet by Tong & Warhaft (1995) and Miller & Dimotakis (1996), and in several other
shear flows reviewed in Sreenivasan (1996). It is closer to results quoted in Antonia
& Pearson (1997), who report a scaling exponent of 0.65–0.66 for the second-order
temperature structure function in the heated cylinder wake at Reλ = 230, or to the
spectra for grid turbulence of Mydlarski & Warhaft (1998b).

The coefficient cθ in Eθθ(κ1) = cθεθε
−1/3κ

−5/3
1 deduced from this spectrum is about

1.4. It is significantly higher than results quoted in Sreenivasan (1996) for high
Reynolds numbers, but is within the range of results from various shear flow mea-
surements reported in Antonia et al. (1999). As discussed in Sreenivasan (1996), the
dissipation measurements are based on assuming scalar isotropy and are thus subject
to considerable uncertainty. On the other hand, at the centreline we find good isotropy
(see § 3) which would seem to support our current estimates of the dissipation and
cθ . While the universality of cθ and spectral exponent is not the main subject of
this paper, the scatter of results certainly supports the view that the scalar spectrum
for shear flows at moderate Reynolds numbers (e.g. Reλ < 1000) depends upon de-
tails of the generation of the flow (Sreenivasan 1996). Specifically, it seems that the
dependence of the spectral exponent and prefactor on Reλ is not universal.
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Figure 2. Isotropy ratios of the filtered gradient fields and of the mean SGS stresses across the heated

wake at x1/D = 25 with the filter size of ∆/η = 125: e, 〈S̃22S̃22〉/〈S̃11S̃11〉; �, 〈S̃12S̃12〉/〈 3
4
S̃11S̃11〉; M,

〈G̃2G̃2〉/〈G̃1G̃1〉; •, 〈τ22〉/〈τ11〉; �, −〈τ12〉/〈τ11〉.

The longitudinal spectrum of the filtered temperature is shown as the dashed curve
in figure 1(b). The lobes at scales below the filter size are due to the streamwise box
filter used in the present study. Spectra of filtered velocity (not shown) have a similar
shape.

3. Isotropy of real SGS dissipation and model predictions
In discussing isotropy of various tensors, we distinguish second-rank and fourth-

rank tensors. Examples of second-rank tensors are the mean SGS stress 〈τij〉, the

filtered scalar gradient 〈G̃iG̃j〉, and the SGS scalar-variance dissipation −〈qiG̃j〉.
Their isotropic form can be written as 〈τij〉 = 〈τ11〉δij , 〈G̃iG̃j〉 = 〈G̃1G̃1〉δij , and

〈qiG̃j〉 = 〈q1G̃1〉δij respectively. On the other hand, the strain-rate-product tensor

〈S̃ij S̃pq〉 and SGS dissipation tensor 〈τij S̃pq〉 are fourth-rank tensors. Their isotropic
form can be written as

〈τij S̃pq〉 = − 1
2
〈τ11S̃11〉[δijδpq − 3

2

(
δipδjq + δiqδjp

)
], (1)

and a similar expression holds for 〈S̃ij S̃pq〉 by replacing τij with S̃ij . To derive the above
expression, we have used the tensor symmetry (in i−j or p−q) and the divergence-free

condition (S̃kk = 0). It follows that 〈S̃22S̃22〉 = 〈S̃11S̃11〉 and 〈S̃12S̃12〉 = 3
4
〈S̃11S̃11〉.

Figure 2 shows isotropy ratios of the filtered gradient fields and of the mean SGS
stresses, for ∆/η = 125. In isotropic conditions, all ratios have to be on the unit line
except 〈τ12〉/〈τ11〉 which should tend to zero with decreasing filter scale since the
fraction of mean shear stress carried by the SGS is expected to vanish when ∆/`→ 0.
As can be seen, both the SGS stress and strain-rate fields are quite isotropic across
the heated wake flow at this scale. For the larger filter sizes of ∆/η = 250 and 500
(not shown), the trends are similar to figure 2 but slightly less isotropic.

Next, results are given for the SGS dissipation tensors across the wake. We define
the following ‘isotropy ratios’:

Iu22 ≡ 〈τ22S̃22〉
〈τ11S̃11〉

, Iu12 ≡ 〈τ12S̃12〉
3
4
〈τ11S̃11〉

, Iθ ≡ 〈q2G̃2〉
〈q1G̃1〉

. (2)

Figures 3(a) and 3(b) show the spatial distributions of the SGS kinetic energy
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Figure 3. Isotropy ratios in the SGS dissipations: (a) Iu12; (b) Iθ (see (2)): e, ∆/η = 125; �,
∆/η = 250; M, ∆/η = 500. For clarity, fourth-order polynomial fits of log I vs. x2/` are added as
solid lines.

dissipation isotropy ratios Iu12 and the SGS scalar-variance dissipation isotropy ratios
Iθ , respectively, across the wake flow with the different filter sizes. All moments in
this study are statistically well converged. For example, running averages such as
n−1
∑n

k=1 qiG̃j did not differ from their global average by more than 6% over the
last 80% of data (i.e. for n ∈ [0.2N,N] where N = 2.4× 106). For different filter sizes
considered, the SGS kinetic energy and scalar-variance dissipations are isotropic only
towards the centreline of the wake. Towards the edges of the wake, large anisotropies
persist (even though there the mean shear and mean temperature gradients vanish
also). The isotropy ratio of Iu12 at a fixed x2/` in figure 3(a) clearly increases with
the filter size. However, the isotropy ratio of the scalar-variance dissipation Iθ shows
almost no variation with filter size for 1 < x2/` < 2, where the scalar gradient in the
cross-wake direction, ∂θ/∂x2, is large.

The increased anisotropy in the outer regions of the wake (see figure 3a, b) is
another striking result. The anisotropy may be associated with the highly intermittent
character of the flow there. One may wonder whether the anisotropy arises from a
superposition of distinct behaviours in the turbulent and the non-turbulent (outer)
regions. Using conditional averaging, O’Neil & Meneveau (1997) have showed that
the conditional averages of the SGS dissipations in the non-turbulent regions were
negligible compared to those in the turbulent regions. The implication was that the
global averages of dissipation could be explained entirely by their conditional mean
value inside the turbulent part: 〈τij S̃ij〉 ≈ Γ 〈τij S̃ij〉T , where Γ (x2) is the intermittency
function (i.e. the fraction of time the signal is turbulent at any given x2), and the
subscript T stands for averaging conditioned on ‘turbulence’ (see O’Neil & Meneveau
1997 for details). When replacing the conditional averages multiplied by Γ in the
expression for isotropy ratios, Γ cancels from both numerator and denominator. This
behaviour suggests that the anisotropy ratios shown in figure 3 are equal to those
inside the turbulent regions alone, and that their rise in the outer parts of the wake
cannot be explained by contributions from the non-turbulent parts. However, it is
still possible that non-trivial contributions to the scalar-variance dissipations could
originate at the interface separating turbulent from non-turbulent regions.

To highlight the variations with filter scale more directly, in figure 4 we plot the
isotropy ratios as a function of scale, for the transverse location x2/` = 1.44 close to
the peak mean temperature gradient. As is evident, the isotropy ratios of the kinetic
energy dissipation decrease towards unity as the filter size decreases, whereas the
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Figure 4. Isotropy ratios of kinetic energy and scalar-variance SGS dissipations at x2/` = 1.44,
where the mean temperature gradient peaks. The open symbols (and dashed and dotted lines)
represent isotropy ratios for the SGS dissipation of kinetic energy: e, Iu22; and �, Iu12; the closed
triangles N (and solid line) are for the scalar dissipation Iθ .

isotropy ratio of the scalar-variance dissipation remains unchanged near Iθ ∼ 2 as
the filter size is decreased. As seen in figure 3, near the centreline, where the mean
shear and scalar gradient vanish, the SGS isotropy ratios are all near unity.

Therefore, we conclude that in terms of the most important of the resolved-SGS
interactions (the mean SGS dissipation), the scalar field maintains strong anisotropy
in the presence of a mean scalar gradient. Conversely, the velocity field has the trends
expected from approach to isotropy at small scales.

Next, we quantify the isotropy level of model predictions, when the data are
analysed in an a priori sense, i.e. by replacing τij and qj above by model expressions.
First, the standard eddy-diffusion model is considered, i.e.

τ
Smag
ij − 1

3
τ

Smag
kk δij = −2(CS∆)2|S̃ |S̃ij , q

Smag
j = −2Pr−1

sgs(CS∆)2|S̃ |G̃j , (3)

where |S̃ | = (
2S̃mnS̃mn

)1/2
is the modulus of the resolved strain rate, CS is the Smagorin-

sky coefficient, and Prsgs is the SGS Prandtl number. Consequently, and independent
of the model coefficients, the isotropy ratios from the eddy-diffusion model are

I
Smag
u22 ≡ 〈|S̃ |S̃22S̃22〉

〈|S̃ |S̃11S̃11〉
, I

Smag
u12 ≡ 〈|S̃ |S̃12S̃12〉

3
4
〈|S̃ |S̃11S̃11〉

, I
Smag
θ ≡ 〈|S̃ |G̃2G̃2〉

〈|S̃ |G̃1G̃1〉
. (4)

In computing the filtered strain-rate magnitude from the data, the following approxi-
mation is used (this is a two-dimensional extension of the one-dimensional approach
of O’Neil & Meneveau 1997, and was also used in Liu, Katz & Meneveau 1999):

|S̃ | ≈ [2(2S̃11S̃11 + S̃22S̃22 + 6S̃12S̃12)]
1/2. This approximation is not expected to affect

the accuracy of our measured isotropy ratios significantly. The reason is that |S̃ | and
its two-dimensional approximation are scalars which multiply equally all terms of the
squared velocity and scalar gradients and is further supported by the isotropic be-
haviour of second-order moments of S̃ij shown in figure 2. The isotropy ratios of the
SGS dissipations from the eddy-diffusion model are shown in figure 5(a). Results are
near unity almost independently of scale, including the passive scalar dissipation. Pro-
files across the wake (not shown) also are near unity. This result is consistent with the
observed isotropy of the square gradient tensors shown in figure 2 (the only difference

here is the additional |S̃ | factor). Hence, using the eddy-diffusion model one would (in-
correctly) predict SGS isotropy since the resolved second-order moments are isotropic.
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Figure 5. Isotropy ratios of components in SGS dissipations from models at x2/` = 1.44, as a

function of filter scale: (a) eddy-diffusion models: e, ISmag
u22 ; �, ISmag

u12 ; N, ISmag
θ (see (4)); (b) nonlinear

models: e, Inl
u22; �, Inl

u12; N, Inl
θ (see (6)).

The second modelling class to be considered here is the ‘nonlinear model’ or
‘tensor eddy-diffusion model’ (Leonard 1974, 1977; Clark, Ferziger & Reynolds 1979;
Liu, Meneveau & Katz 1994; Borue & Orszag 1998; Meneveau & Katz 2000). The
nonlinear model reads as follows:

τnl
ij = Cnl∆

2 ∂ũi

∂xk

∂ũj

∂xk
, qnl

j = Cnlθ∆
2 ∂θ̃

∂xk

∂ũj

∂xk
, (5)

where Cnl and Cnlθ are the nonlinear model coefficients. Therefore, the corresponding
isotropy ratios from the nonlinear model are defined as follows:

Inl
u22 ≡

〈
∂ũ2

∂xk

∂ũ2

∂xk
S̃22

〉
〈
∂ũ1

∂xk

∂ũ1

∂xk
S̃11

〉 , Inl
u12 ≡

〈
∂ũ1

∂xk

∂ũ2

∂xk
S̃12

〉
3
4

〈
∂ũ1

∂xk

∂ũ1

∂xk
S̃11

〉 , Inl
θ ≡

〈
∂θ̃
∂xk

∂ũ2

∂xk
G̃2

〉
〈
∂θ̃
∂xk

∂ũ1

∂xk
G̃1

〉 , (6)

where k varies from 1 to 2 in the analysis of our two-dimensional data.
The isotropy ratios of the SGS dissipations from the nonlinear model are shown

in figure 5(b), as a function of filter scale. As is apparent on comparing with figure 4,
the main features of anisotropy and filter-size dependence are correctly reproduced
qualitatively. Quantitatively, the levels of anisotropy are overestimated. For instance,
the level of anisotropy for the modelled SGS scalar-variance dissipation appears to
stay near Inl

θ ∼ 2.5 as opposed to Iθ ∼ 2 for the real SGS scalar dissipation.

4. Summary and conclusions
In studying passive scalar statistics in a turbulent shear flow with a mean temper-

ature gradient we focus on statistics of interest to subgrid modelling and large-eddy
simulation. In order to obtain the filtered and subgrid velocities and temperatures, a
probe array composed of four X-wire and four cold-wire sensors is used and two-
dimensional box filtering in the streamwise and cross-wake directions is applied to
the data. The isotropy ratios of the SGS kinetic energy and scalar-variance dissipa-
tions are investigated as functions of position in the flow and of filter scale. Both
dissipations are isotropic independent of filter size near the centreline where there is
no mean shear or scalar gradient. However, at locations with high gradient (and also
further towards the outer wake regions), we find that the scalar-variance dissipation
remains highly anisotropic, independent of filter size. Conversely, the kinetic energy
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dissipation tensor approaches isotropy as the filter size is decreased. A mechanistic
explanation of the observed trends in terms of possible orientations of ramp and cliff
structures is not evident to us at this time. The persistence of scalar anisotropy even
at small scales is consistent with prior results for structure functions and gradient
statistics of unfiltered turbulence (Mestayer 1982; Sreenivasan 1991; Warhaft 2000).
The present results quantify the impact of this anisotropy on the interactions among
large and small scales in the context of SGS modelling and LES.

We find that the predictions of eddy-diffusion models are much more isotropic
than the real phenomenon. This may at first glance seem obvious since eddy-diffusion
models are often invoked under the banner of isotropy. However, the present result
does not arise from an explicit isotropy assumption built into the model, but because
the resolved gradients have second-order statistics that are isotropic. For instance, if
the scalar gradient tensor 〈G̃iG̃j〉 had been found to be anisotropic, it would have
implied anisotropic behaviour of the eddy-diffusion model’s predictions. Instead, the
isotropy that exists in the filtered scalar gradients is incorrectly applied to model the
anisotropic statistics of the SGS heat flux. The main problem for the eddy-diffusion
model appears to be that it uses second-order statistics to model third-order statistics.
Conversely, the anisotropy exists in the third-order moments that arise from the veloc-

ity and scalar product (qi) multiplied by the scalar gradient (G̃j), but is not discernible

in the second-order statistics of G̃j alone (even when modulated by the strain-rate
magnitude). The anisotropy is clearly discernible, however, in the third-order moments
consisting of the filtered velocity gradients times scalar gradients squared that arise
in the expression for modelled SGS dissipation of scalar variance using the nonlinear
model. These expressions are able to reproduce the detailed phase relationships among
the velocity and scalar field that govern the SGS dissipation (cascade) of scalar vari-
ance. We remark that the overprediction of anisotropy by the nonlinear model (and
its underprediction by the eddy-diffusion model) is reminiscent of the opposing trends
of these two models documented in Liu et al. (1999) for rapidly strained turbulence in
cold flow. The opposing trends suggest that a linear combination of the two models,
i.e. the ‘mixed model’, can be tuned to reproduce the correct amount of anisotropy
(for a discussion of the application of mixed models in LES, see Meneveau & Katz
2000). However, note that the data for Iu12 and Iu22 at ∆/η = 250 and 125 do not
provide clear justification for choosing the mixed over the nonlinear model.

Finally, it is stressed that our results are obtained in a single flow for a single
moderate Reynolds number. Even if the present evidence in figure 4 of an essentially
scale-independent anisotropy for the scalar dissipation appears to be quite strong, the
results could change in another flow, or at higher Reynolds numbers (we recall that
according to Sreenivasan 1996, universal behaviour for the scalar requires Reλ above
1000 or so). These considerations serve as motivation for further work in this area.

We thank Professors Z. Warhaft and L. Mydlarski for useful comments and
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the National Science Foundation (grant CTS-9803385).
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